SlicePick™

Extract BMD measurements from routine CT or PET/CT abdomen studies with no extra scans or exposure.

SlicePick, a QCT PRO utility allows bone density measurements to be extracted from routine (no IV contrast) abdomen CT studies with no extra scans or exposure, by simply including a calibration phantom during the scan and using SlicePick to extract the relevant images for measurement with QCT PRO. The phantom causes no interference with the abdomen study.

*No IV contrast

PACS Option

The QCT PRO PACS option provides integration of QCT PRO into your local PACS solution. Integration allows you to exploit your local PACS infrastructure to work more efficiently by providing a paperless report that can be electronically archived and retrieved, reviewed locally or remotely, delivered in electronic form to your patients or physicians, or handled in other manners supported by your PACS.

Mindways Software, Inc.
3001 S Lamar Blvd Ste 302
Austin TX 78704-4799 USA

Tel: +1 512 912 0871
Fax: +1 512 912 0872

Email: info@qct.com
www.qct.com

Take advantage of your CT or PET/CT scanner for faster, easier, clinically superior bone densitometry
The QCT PRO Advantage

If you need bone densitometry and have access to a CT scanner with 5 minutes per patient capacity, a desire for the best technology and, at the same time, the most cost-effective solution, QCT PRO is for you. QCT PRO transforms your CT scanner into the only bone densitometer with the best of both worlds: (1) QCT trabecular spine BMD for sensitive treatment monitoring and early detection of low bone mass, and (2) DXA-equivalent hip BMD for use in diagnosis of osteoporosis and low bone mass, and fracture risk assessment.

QCT PRO is the first system to exploit CT’s inherent advantage for true 3-dimensional densitometry with volumetric BMD of the spine and hip. Volumetric BMD is faster, easier, clinically superior, and enables new densitometric capabilities not within the reach of DXA.

QCT PRO’s scanner independent, Windows®-based design enables clinicians and researchers without CT scanners access to QCT. QCT scans can be performed at any CT site and the data conveyed to any PC running QCT PRO via various methods such as network or CD for convenient analysis and diagnostic control at that location.

QCT PRO is the sensible financial investment in addition to the performance choice. DXA simply cannot compare with QCT PRO. With a low purchase price and no site, personnel or high recurring maintenance costs, the cost of QCT PRO is a small fraction of DXA.

The Best of Both Worlds

Volumetric Spine BMD
- Measure only trabecular bone for the highest sensitivity and earliest detection of bone loss and therapeutic response
- Circumvents DXA confounding factors such as OJ, osteoporosis, aortic calcifications, and scoliosis.

DXA-Equivalent Hip BMD
- Clinically interchangeable with DXA
- Same areal (g/cm²) measurements and ROIs
- Comparable T-scores
- 0.7% precision

Fast, Simple
- Helical scans in seconds
- Highly automated analysis in 1–2 minutes

Cost-Effective
- Reimbursable
- Add-on to your CT scanner increases equipment utilization
- Compatible with any DICOM CT or PET/CT scanner
- No additional siting, room, personnel, or high maintenance costs
- Buy once, use indefinitely; survives scanner changes/upgrades

High Volume/Low Impact

<table>
<thead>
<tr>
<th>Min/Day</th>
<th>Studies/Year</th>
<th>Revenue*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>260</td>
<td>$19,500</td>
</tr>
<tr>
<td>10</td>
<td>520</td>
<td>$39,000</td>
</tr>
<tr>
<td>15</td>
<td>780</td>
<td>$58,500</td>
</tr>
<tr>
<td>30</td>
<td>1560</td>
<td>$117,000</td>
</tr>
<tr>
<td>60</td>
<td>3120</td>
<td>$234,000</td>
</tr>
</tbody>
</table>

*Revenue based on a payment of $75/patient

The World Health Organization recommends if a diagnosis of osteoporosis is based exclusively on a bone density measurement it should be based on the hip.
CTXA-Hip

Computed Tomography X-Ray Absorptiometry

CTXA is a revolutionary new technology that enables you to produce DXA-equivalent hip measurements from a CT volumetric data set. The areal measurements and ROIs are the same as those used for DXA-hi. The measurements are interpreted like DXA-hi measurements, including the usage of WHO criteria for fracture-risk assessment. Any physician who is familiar with interpreting DXA reports will instantly recognize and feel comfortable with CTXA reports, and understand how to use them in the diagnosis of osteoporosis and low bone mass conditions.

CTXA is a simple, cost-effective replacement for DXA. CTXA uses equipment you already have. It is a fraction of the cost of DXA without the space, personnel, and maintenance requirements.

CTXA studies are fast and easy. Scan times are typically less than 10 seconds and the highly automated analysis takes about one minute. Total study times of less than 10 minutes are easily attainable. Hip and spine can be combined in one scan, further increasing procedural efficiency.

CTXA exploits the 3D data set to go beyond DXA. Besides the standard DXA areal BMD estimates, CTXA provides volume density measurements in each of the standard DXA ROIs, along with separate cortical and trabecular bone compartment density and volume density estimates (both areal and volume density estimates calculated).

Features at a glance:
- Bone mineral analysis of the proximal femur
- Clinically equivalent to DXA
- Identical areal (g/cm²) measurements and ROIs
- Comparable T-scores
- 0.7% precision, 1.1% long-term precision, total hip; 1.2% long-term precision, femoral neck
- Bilateral hips from a single scan
- Fast; helical scan time typically <10 seconds
- Easy; automated analysis in 1–2 minutes
- Volumetric BMD estimates provided in addition to standard DXA-equivalent areal density measurements
- Separate pseudo-cortical and pseudo-trabecular bone compartment density measurements

Comparison of CTXA and DXA Proximal Femur Reference Data

The following information shows comparisons of BMD reference data measurements of the total hip made with CTXA and DXA. Normalizing the CTXA reference data to the DXA standard will allow you to use the CTXA data without the need for conversion. The measurements are standardized to the DXA reference data using the following approximate relationship between CTXA and DXA.

\[
\text{BMDDXA} = 0.998 \times \text{BMDCTXA} + 0.013 \text{g/cm}^2
\]

<table>
<thead>
<tr>
<th>Age Group</th>
<th>BMDCTXA (g/cm²) Mean (STD)</th>
<th>BMDDXA (g/cm²) Mean (STD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-39</td>
<td>0.931 0.111</td>
<td>0.942 0.122</td>
</tr>
<tr>
<td>40-49</td>
<td>0.963 0.121</td>
<td>0.987 0.135</td>
</tr>
<tr>
<td>50-59</td>
<td>0.989 0.132</td>
<td>0.983 0.138</td>
</tr>
<tr>
<td>60-69</td>
<td>0.978 0.132</td>
<td>0.979 0.139</td>
</tr>
<tr>
<td>70-79</td>
<td>0.715 0.137</td>
<td>0.728 0.138</td>
</tr>
<tr>
<td>Young Normal</td>
<td>0.502 0.116</td>
<td>0.537 0.122</td>
</tr>
</tbody>
</table>

CTXA-Hip

Spine QCT appeared to provide the most robust performance overall. For subjects with established OA, assessment of BMD by volumetric QCT may be suggested.

In postmenopausal women with osteoporosis induced by long-term glucocorticoid treatment who are also receiving HRT, BMD of the lumbar spine as measured by QCT, but not DXA, is an independent predictor of vertebral fractures.

We conclude that QCT and mL-DXA are superior to PA-DXA and l-DXA in detecting bone loss in patients with DJD.

Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women; Yu W, Seker C2, Grieve G2, Glynn T1, Yu Y, Genant HK, Calcif Tissue Int. 2005 May; 76(5):406-12

Many hormone-naive men with prostate carcinoma have low bone mineral density. QCT is a more sensitive method than DXA for diagnosing low bone mineral density in this patient population.

In postmenopausal women with osteopenia: Genant HK, Lang TF; Acta Radiol. 2005 May; 46(3):269-75

Effect of spinal degenerative changes on volumetric bone mineral density of the central skeleton as measured by quantitative computed tomography; Guglielmi G, Floriani I, Torri V, Li J, van Kuijk C, Genant HK, Lang TF; JAMA. 2005 May 18; 293(20):2528–32

In postmenopausal women with osteoporosis induced by long-term glucocorticoid treatment who are also receiving HRT, BMD of the lumbar spine as measured by QCT, but not DXA, is an independent predictor of vertebral fractures.

Quantitative computed tomography of the lumbar spine, not dual energy absorptiometry, is an independent predictor of prevalent vertebral fractures in postmenopausal women with osteoporosis, receiving long-term glucocorticoid and hormone-replacement therapy; Bannwarth C, Lang E, Madsen G, Lane NC; Calcif Tissue Int. 2005 May; 76(5):406-12.

In postmenopausal women with osteoporosis induced by long-term glucocorticoid treatment who are also receiving HRT, BMD of the lumbar spine as measured by QCT, but not DXA, is an independent predictor of vertebral fractures.

We conclude that QCT and mL-DXA are superior to PA-DXA and l-DXA in detecting bone loss in patients with DJD.

Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women; Yu W, Seker C2, Grieve G2, Glynn T1, Yu Y, Genant HK, Calcif Tissue Int. 2005 May; 76(5):406-12

Many hormone-naive men with prostate carcinoma have low bone mineral density. QCT is a more sensitive method than DXA for diagnosing low bone mineral density in this patient population.

In postmenopausal women with osteopenia: Genant HK, Lang TF; Acta Radiol. 2005 May; 46(3):269-75

Effect of spinal degenerative changes on volumetric bone mineral density of the central skeleton as measured by quantitative computed tomography; Guglielmi G, Floriani I, Torri V, Li J, van Kuijk C, Genant HK, Lang TF; JAMA. 2005 May 18; 293(20):2528–32

Many hormone-naive men with prostate carcinoma have low bone mineral density. QCT is a more sensitive method than DXA for diagnosing low bone mineral density in this patient population.

In postmenopausal women with osteopenia: Genant HK, Lang TF; Acta Radiol. 2005 May; 46(3):269-75

Effect of spinal degenerative changes on volumetric bone mineral density of the central skeleton as measured by quantitative computed tomography; Guglielmi G, Floriani I, Torri V, Li J, van Kuijk C, Genant HK, Lang TF; JAMA. 2005 May 18; 293(20):2528–32

Many hormone-naive men with prostate carcinoma have low bone mineral density. QCT is a more sensitive method than DXA for diagnosing low bone mineral density in this patient population.
OCT’s ability to assess trabecular, volumetric mineral density, independent of cortical bone, has long been recognized as advantageous because of the high metabolic activity of trabecular bone relative to cortical bone. Less commonly recognized is that volumetric mineral density measurements circumvent a number of factors that confound DXA area density measurements at the spine.

Common DXA-spine confounding factors include:
- The majority of mineral mass as measured by DXA at the spine is attributable to mineral mass in the posterior elements.
- Area density estimates increase as vertebral disk spaces narrow and/or vertebral heights decrease.
- Area density estimates increase as a result of osteophytosis associated with conditions such as osteoarthritis.
- Area density estimates increase as a result of aortic calcifications and other extraneous sources of mineral.

Collectively these factors degrade sensitivity and specificity when DXA is used to identify individuals at increased risk of fracture and assess the efficacy of treatments intended to reduce fracture risk.

By virtue of the anatomical detail intrinsic to CT images, OCT can be used to characterize metabolically important, trabecular bone in regions unaffected by common degenerative changes at the spine and aortic calcifications, and exclusive of cortical bone.

55% to 90% of osteoporosis-related fractures occur in individuals that would not be diagnosed with osteoporosis based on a DXA bone density test.

While conventional QCT relies upon single, thick CT images through each of multiple vertebrae, 3D OCT exploits CT’s ability to construct a three dimensional representation of human anatomy using many thin images. This results in a number of technical and clinical advantages, including:
- Improved measurement precision because of decreased reliance upon the skill of a CT operator to precisely position a single, thick slice through a vertebra as with conventional OCT.
- Ability to assess BMD in patients with scoliosis or other complex spinal deformities.
- Shortened scan times due to elimination of CT gantry tilt that is required with conventional OCT.
- Support for modern multi-slice CT scanners—some of which no longer support gantry tilt.
- Extension of OCT to complex anatomical regions such as the hip.
The Spine Volumetric BMD Advantage

Quantitative computed tomography (QCT) can determine the true volumetric bone density of trabecular and cortical bone separately and at any skeletal site. QCT, because of its sensitivity to changes in bone status, is widely accepted as the superior method for the axial skeleton because of the high responsiveness of spinal trabecular bone to osteoporotic changes. The precision and accuracy of QCT at this site are somewhat lower than the respective values of other densitometric techniques. Nevertheless, because QCT measures a higher rate of bone loss at early premenopausal age, it allows better estimation of risk of vertebral fracture and smaller time intervals between follow-up measurements. The clinical acceptance of QCT is constrained by limited access to CT scanners for bone densitometry, the higher degree of operator dependence and the inability of QCT to measure the femur.

Prevrhal S, Genant HK; Radiology; 1999 Mar; 39(3):194-202

While conventional QCT relies upon single, thick CT images through each of multiple vertebrae, 3D QCT exploits CT’s ability to construct a three dimensional representation of human anatomy using many thin images. This results in a number of technical and clinical advantages, including:

- Improved measurement precision because of decreased reliance upon the skill of a CT operator to precisely position a single, thick slice through a vertebra as with conventional QCT.
- Ability to assess BMD in patients with scoliosis or other complex spinal deformities.
- Shortened scan times due to elimination of CT gantry tilt that is required with conventional QCT.
- Support for modern multi-slice CT scanners—some of which no longer support gantry tilt.
- Extension of QCT to complex anatomical regions such as the hip.

The 3D Imaging Advantage

- Define only start and end points
- No gantry tilt, no scan pauses
- Helical/multi-slice scan in seconds
- Scan only 2 instead of 3–4 vertebra
- Combine spine and hip in one fast scan

55% to 90% of osteoporosis-related fractures occur in individuals that would not be diagnosed with osteoporosis based on a DXA bone density test.

DXAQCT
CTXA-Hip
Computed Tomography X-Ray Absorptiometry

CTXA is a revolutionary new technology that enables you to produce DXA-equivalent hip measurements from a CT volumetric data set. The areal measurements and ROIs are the same as those used for DXA-hip. The measurements are interpreted like DXA-hip measurements, including the usage of WHO criteria for fracture-risk assessment. Any physician who is familiar with interpreting DXA reports will instantly recognize and feel comfortable with CTXA reports, and understand how to use them in the diagnosis of osteoporosis and low bone mass conditions.

CTXA is a simple, cost-effective replacement for DXA. CTXA uses equipment you already have. It is a fraction of the cost of DXA without the space, personnel, and maintenance requirements.

CTXA studies are fast and easy. Scan times are typically less than 10 seconds and the highly automated analysis takes about one minute. Total study times of less than 10 minutes are easily attainable. Hip and spine can be combined in one scan, further increasing procedural efficiency.

CTXA exploits the 3D data set to go beyond DXA. Besides the standard DXA areal BMD estimates, CTXA provides volume density in each of the standard DXA ROIs, along with separate cortical and trabecular density measurements (both areal and volume density estimates). Besides the CTXA exploits the 3D data set to go beyond DXA. Besides the standard DXA areal BMD estimates, CTXA provides volume density in each of the standard DXA ROIs, along with separate cortical and trabecular bone compartment density measurements (both areal and volume density estimates calculated).

The QCT Spine Trabecular Advantage

Features at a glance

- Bone mineral analysis of the proximal femur
- Clinically equivalent to DXA
- Identical areal (g/cm²) measurements and ROIs
- Comparable T-scores
- 0.7% precision, 1.1% long-term precision, total hip; 1.2% long-term precision, femoral neck
- Bilateral hips from a single scan
- Fast; helical scan time typically <10 seconds
- Easy; automated analysis in 1–2 minutes
- Volumetric BMD estimates provided in addition to standard DXA-equivalent areal density measurements

Spine QCT appeared to provide the most robust performance overall.

Some important points: CTXA is a simple, cost-effective replacement for DXA. CTXA uses equipment you already have. It is a fraction of the cost of DXA without the space, personnel, and maintenance requirements. CTXA studies are fast and easy. Scan times are typically less than 10 seconds and the highly automated analysis takes about one minute. Total study times of less than 10 minutes are easily attainable. Hip and spine can be combined in one scan, further increasing procedural efficiency. CTXA exploits the 3D data set to go beyond DXA. Besides the standard DXA areal BMD estimates, CTXA provides volume density in each of the standard DXA ROIs, along with separate cortical and trabecular bone compartment area and volume density estimates—new information not available from DXA that may hold the key to better patient care in the future.

What do the experts say?

In postmenopausal women with osteoporosis induced by long-term glucocorticoid treatment who are also receiving HRT, BMD of the lumbar spine as measured by QCT, but not DXA, is an independent predictor of vertebral fractures.

We conclude that QCT and mL-DXA are superior to PA-DXA and L-DXA in detecting bone loss in patients with ODP.

Many hormone-naive men with prostate carcinoma have low bone mineral density. QCT is a more sensitive method than DXA for diagnosing low bone mineral density in this patient population.

Low bone mineral density is strongly predictive of successful treatment for prostate carcinoma, Smith HR, McGovern PJ, Felson MD, Schipper DJ, Kurth TP, Instzovitz JS, Cancer 2001 Jun 15; 91(12):2284-95

Comparison of CTXA and DXA Proximal Femur Reference Data

The following information shows comparisons of BMD reference data measurements of the total hip made with CTXA and DXA. Normalizing the CTXA reference data to the DXA can facilitate the comparison of BMD reference data measurements of the total hip made with CTXA and DXA.

Reference Data

<table>
<thead>
<tr>
<th>Reference Data</th>
<th>Age Group</th>
<th>Mean (g/cm²)</th>
<th>SD (g/cm²)</th>
<th>Mean (g/cm²)</th>
<th>SD (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMDDXA = 0.998 * BMDCTXA + 0.013 g/cm²</td>
<td>30-39</td>
<td>0.931</td>
<td>0.111</td>
<td>0.942</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>0.963</td>
<td>0.121</td>
<td>0.967</td>
<td>0.135</td>
</tr>
<tr>
<td></td>
<td>50-59</td>
<td>0.961</td>
<td>0.138</td>
<td>0.968</td>
<td>0.138</td>
</tr>
<tr>
<td></td>
<td>60-69</td>
<td>0.789</td>
<td>0.133</td>
<td>0.797</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td>0.715</td>
<td>0.137</td>
<td>0.729</td>
<td>0.138</td>
</tr>
<tr>
<td></td>
<td>Young Normal</td>
<td>0.522</td>
<td>0.116</td>
<td>0.527</td>
<td>0.122</td>
</tr>
</tbody>
</table>

CTXA

DXA

Bone Mineral Analysis of the Proximal Femur

- Identical areal (g/cm²) measurements and ROIs
- Identical T-scores
- 0.7% precision, 1.1% long-term precision, total hip; 1.2% long-term precision, femoral neck
- Bilateral hips from a single scan
- Fast; helical scan time typically <10 seconds
- Easy; automated analysis in 1–2 minutes
- Volumetric BMD estimates provided in addition to standard DXA-equivalent areal density measurements

Separate pseudo-cortical and pseudo-trabecular bone compartment density measurements

Spine QCT appeared to provide the most robust performance overall.

For subjects with established OA, assessment of BMD by volumetric QCT may be suggested.

In postmenopausal women with osteoporosis induced by long-term glucocorticoid treatment who are also receiving HRT, BMD of the lumbar spine as measured by QCT, but not DXA, is an independent predictor of vertebral fractures.

Quantitative computed tomography of the lumbar spine, not dual x-ray absorptiometry, is an independent predictor of prevalent vertebral fractures in postmenopausal women with osteoporosis receiving long-term glucocorticoid and hormone-replacement therapies; Bilezikian J, Lang E, Martin G, Lane NE; Osteoporos Int 2002 May;13(5):387-94

We conclude that QCT and mL-DXA are superior to PA-DXA and L-DXA in detecting bone loss in patients with ODP.

Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women; Yu W, Elder CO, Taban T, Gravenius G, Li J, Lu Y, Genant HK, Calfee P; J Bone Miner Res. 1995 Sep;10(9):1305-10

Many hormone-naive men with prostate carcinoma have low bone mineral density. QCT is a more sensitive method than DXA for diagnosing low bone mineral density in this patient population.

Low bone mineral density is strongly predictive of successful treatment for prostate carcinoma, Smith HR, McGovern PJ, Felson MD, Schipper DJ, Kurth TP, Instzovitz JS, Cancer 2001 Jun 15; 91(12):2284-95

DXA-equivalent hip BMD at a fraction of the cost of DXA

Spine and bone densitometry with your CT or PET/CT scanner

![Image](612x104 to 1225x632)
The QCT PRO™ Advantage

If you need bone densitometry and have access to a CT scanner with 5 minutes per patient capacity, a desire for the best technology and, at the same time, the most cost-effective solution, QCT PRO is for you.

QCT PRO transforms your CT scanner into the only bone densitometer with the best of both worlds: (1) QCT trabecular spine BMD for sensitive treatment monitoring and early detection of low bone mass, and (2) DXA-equivalent hip BMD for use in diagnosis of osteoporosis and low bone mass, and fracture risk assessment.

QCT PRO is the first system to exploit CT’s inherent advantage for true 3-dimensional densitometry with volumetric BMD of the spine and hip. Volumetric BMD is faster, easier, clinically superior, and enables new densitometric capabilities not within the reach of DXA.

QCT PRO’s scanner independent, Windows®-based design enables clinicians and researchers without CT scanners access to QCT. QCT scans can be performed at any CT site and the data conveyed to any PC running QCT PRO via various methods such as network or CD for convenient analysis and diagnostic control at that location.

QCT PRO is the sensible financial investment in addition to the performance choice. DXA simply cannot compare with QCT PRO. With a low purchase price and no site, personnel or high recurring maintenance costs, the cost of QCT PRO is a small fraction of DXA.

The Best of Both Worlds

Volumetric Spine BMD
- Measure only trabecular bone for the highest sensitivity and earliest detection of bone loss and therapeutic response
- Circumvents DXA confounding factors such as DJD, osteophytosis, aortic calcifications, and scoliosis.

DXA-Equivalent Hip BMD
- Clinically interchangeable with DXA
- Same areal (g/cm²) measurements and ROIs
- Comparable T-scores
- 0.7% precision

Fast, Simple
- Helical scans in seconds
- Highly automated analysis in 1–2 minutes

Cost-Effective
- Reimbursable
- Add-on to your CT scanner increases equipment utilization
- DXA replacement at a fraction of the cost of DXA
-Compatible with any DICOM CT or PET/CT scanner
-No additional siting, room, personnel, or high maintenance costs
-Buy once, use indefinitely, survives scanner changes/upgrades

High Volume/Low Impact

Min/Day Studies/Year Revenue* 5 260 $19,500 10 520 $39,000 30 1560 $117,000 60 3120 $234,000

Assumptions - 10 Patients/Week

Purchase Cost 22,500 50,000 50,000
System Siting Cost 0 3,000 3,000
Annual Maintenance Cost 1,000 5,000 5,000
Personnel Cost 0 26,000 26,000
Insurance 0 0 0
Instruments/Procedures Cost 10 20 20
Procedure Reimbursement 675 675 675

*Estimates based on a payment of $75/patient

The World Health Organization recommends if a diagnosis of osteoporosis is based exclusively on a bone density measurement it should be based on the hip. DXA-Equivalent Hip BMD
- Clinically interchangeable with DXA
- Same areal (g/cm²) measurements and ROIs
- Comparable T-scores
- 0.7% precision

Fast, Simple
- Helical scans in seconds
- Highly automated analysis in 1–2 minutes

Cost-Effective
- Reimbursable
- Add-on to your CT scanner increases equipment utilization
- DXA replacement at a fraction of the cost of DXA
-Compatible with any DICOM CT or PET/CT scanner
-No additional siting, room, personnel, or high maintenance costs
-Buy once, use indefinitely, survives scanner changes/upgrades

High Volume/Low Impact

Min/Day Studies/Year Revenue* 5 260 $19,500 10 520 $39,000 30 1560 $117,000 60 3120 $234,000

Assumptions - 10 Patients/Week

Purchase Cost 22,500 50,000 50,000
System Siting Cost 0 3,000 3,000
Annual Maintenance Cost 1,000 5,000 5,000
Personnel Cost 0 26,000 26,000
Insurance 0 0 0
Instruments/Procedures Cost 10 20 20
Procedure Reimbursement 675 675 675

*Estimates based on a payment of $75/patient

The World Health Organization recommends if a diagnosis of osteoporosis is based exclusively on a bone density measurement it should be based on the hip.
SlicePick™

Extract BMD measurements from routine* CT or PET/CT abdomen studies with no extra scans or exposure.

SlicePick, a QCT PRO utility allows bone density measurements to be extracted from routine (no IV contrast) abdomen CT studies with no extra scans or exposure, by simply including a calibration phantom during the scan and using SlicePick to extract the relevant images for measurement with QCT PRO. The phantom causes no interference with the abdomen study.

*No IV contrast

PACS Option

The QCT PRO PACS option provides integration of QCT PRO into your local PACS solution. Integration allows you to exploit your local PACS infrastructure to work more efficiently by providing a paperless report that can be electronically archived and retrieved, reviewed locally or remotely, delivered in electronic form to your patients or physicians, or handled in other manners supported by your PACS.